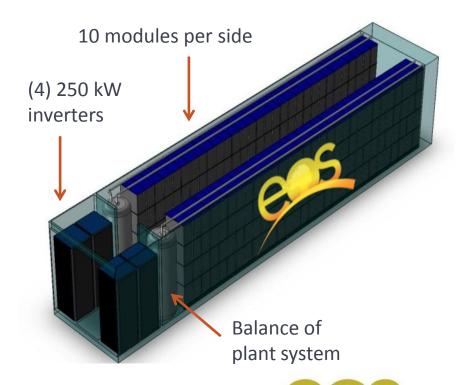


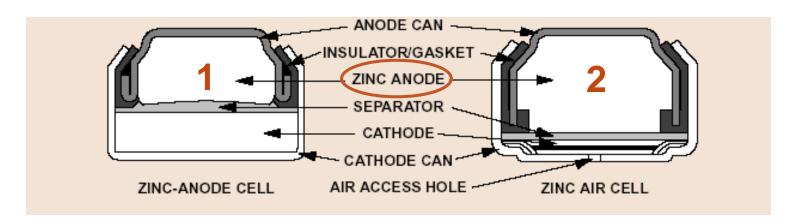
Crash-Safe Energy Storage Systems ARPA-E Workshop

Phil Black Eos Energy Storage November 2012

Executive Summary


- Eos has developed a safe, reliable, non-toxic, non-combustible, low cost zinc energy storage system for the electric grid that can be sold for \$160/kWh, rechargeable over 10,000 cycles (30 years)
- Eos is scaling up battery prototypes in 2012/3 in preparation for manufacturing and delivery of MW grid-scale systems to grid customers in 2014
- Eos' low-cost zinc battery technology could enable an EV with 350+ km range that can be produced at the same cost as a gasoline powered vehicle
- While Eos will emphasize grid-storage with its Aurora product, Eos would like to partner with OEMs and battery suppliers to develop:
 - 1. Eos zinc-air range extender (near-term)
 - 2. Eos refuelable *and* rechargeable zinc-air battery/fuel-cell (long-term)

Eos Aurora 1000 | 6000

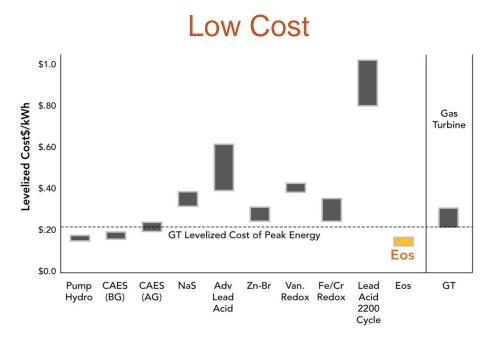

Targeted applications define technology characteristics required for profitability

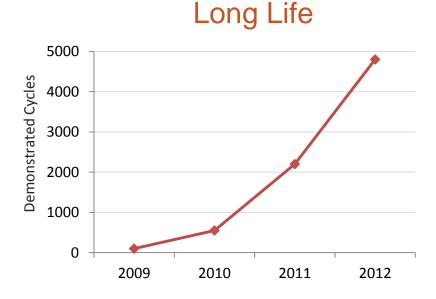
Technology Attributes				
Low-Cost	\$1,000/kW or \$160/kWh			
Long Life	10,000 cycles (30 years)			
Ample Storage	1 MW for 6 hours = 6MWh in a 40' ISO shipping container			
Efficient	75% round-trip efficiency			
100% Safe	Non-toxic, non-combustible, no risk of catastrophic failure			

Why Zinc-Air Batteries?

- Increased amount of anode material in the Zinc-air cell enables greater capacity and energy density at lower cost
- Zinc-air batteries use ambient air as the active cathode material eliminating material that would normally be carried within the battery

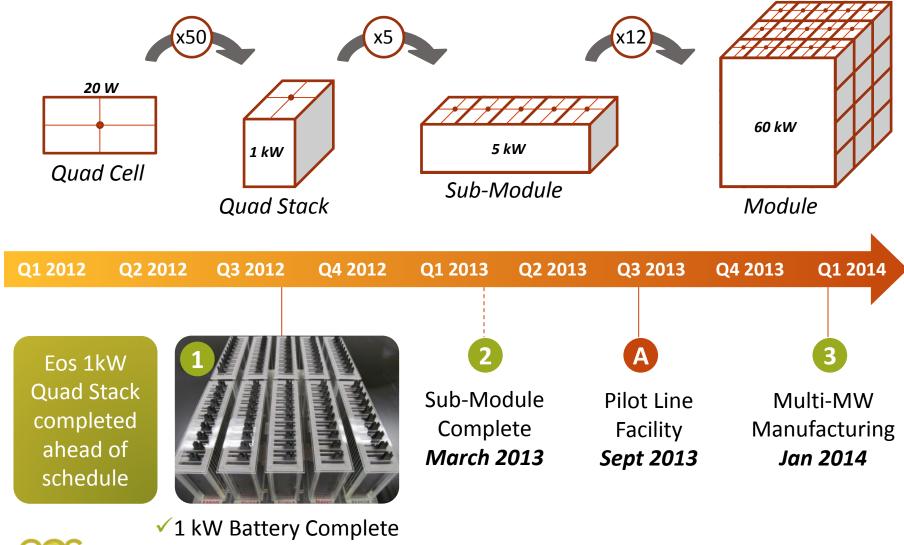
Vs


Non-metal Air Batteries



Zinc-Air Battery

Eos Competitive Advantages


High Energy Density

Eos Aurora Milestones

Aug 2012

Electric Vehicle Challenges

- Today's EV battery costs \$500/kWh
- Goal of \$250/kWh

7 hrs to charge 24 kWh
 Nissan Leaf

Cost?

Range?

- 40-190 mile range today
- Goal of 350 miles

Fueling Time?

Safety?

• Instability of Li-ion results in catastrophic incidents

Eos EV Development Roadmap

Current Focus	Near Term (2014)	Long Term (2015-16)	
Eos Aurora: Grid-Scale	1. EV Range Extender	2. Refuelable Battery	
HARDINA PRINCIPAL DE LA CONTRACTOR DE LA	 30 kWh – 10 kW range extender Paired with lithium ion Full system range of 250 km <\$3,500 	 72 kW pulse / 35 kW continuous 70 kWh for 350 km range 3 min mechanical refuel <\$10,000 	
Eos internal resources dedicated to first generation grid product launch	Adaptation of zinc-air technology optimized for power, weight, and mobile application requirements	Innovative battery design requires advanced engineering to enable mechanical refueling	

EOS EV Battery Metrics

	Eos EV Near- term goal	Eos EV Med- term goal	Average Lithium Ion	USABC Minimum Goals	USABC Long Term Goals
System Level W/kg	91	145	350	300	400
System Level Wh/kg	120	180	100	150	200
System Level W/I	208	530	350	460	600
System Level Wh/I	273	620	100	230	300
Cost USD/kWhr	100	<100	500	<150	100

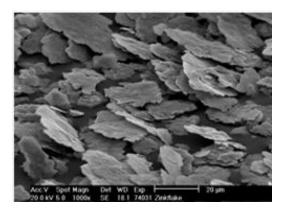
EOS densities are system level including balance of plant

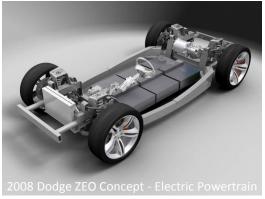
A dual EOS and power battery can add kW with small weight and cost penalty

Eos excels at system level costs per Kwh

EV Development Focus

Automotive Needs	Eos Development Approach
 Sloshing of electrolyte 	Viscosify electrolyte
• Low Temperature	 Electrolyte formulation, viscosifier with antifreeze characteristics
High Temperature	 Electrolyte management system and self- filling/healing system design
 Semi-Sealed Construction 	Alter electrode reactions, engineer case
 Sustained high power 	 Optimize power by enhancing chemistry; match w/ Li-ion, lead-acid, or capacitor


24 months of joint development could solve engineering—not fundamental science—challenges to create a low cost, long range vehicle battery



Eos Vista Zinc-Air Battery/Fuel Cell

Refueling Process Description:

- 1. The Eos Transfusion System replaces fully discharged electrolyte with zinc metal / electrolyte slurry
 - Turbulence used to suspend zinc metal flakes in electrolyte solution as it flows into the battery
 - Discharged electrolyte evacuated and returned to refueling station for re-use/recycling
- 2. Heavy zinc flakes settle on anode surface as each cell is refilled (think snow globe).
- 3. A brief conditioning charge lightly plates the zinc metal to the anode surface within each cell. Start to finish, the vehicle is fully recharged in 3-5 minutes.

Eos Vista battery will enable rapid electrolyte refueling in addition to electrical recharging

Summary

Eos Electric Vehicle Strategy				
Goal:	While maintaining separate and primary focus on grid-scale technology, partner with major EV players to develop and commercialize Eos automotive battery configurations			
Eos Offering:	 Eos zinc-air range extender Eos refuelable zinc-air battery/fuel-cell 			
Potential Partners:	Battery manufacturers, Tier 1 suppliers, OEMs			
Development Plan:	 Phase I (R&D) – Achieve and validate performance targets for range extender by 2013 Phase II (Engineering) – Battery design and productization to deliver range extender prototype by 2014 Phase III (Future Development) – Develop architecture and electrolyte exchange mechanism for refuelable battery/fuel-cell in 2015-16 			

